Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries


A challenge in using silicon particles for lithium batteries is that the large volume changes during charge-discharge cycling cause the particles to fracture, which builds up an insulating interface layer. Choi et al. show that traditional binder materials used to cushion the silicon particles can be improved by adding small amounts of polyrotaxanes (see the Perspective by Ryu and Park). The molecules consist of multiple rings that are strung along a linear segment and stoppered at each end. Some of the rings are anchored to the polymer binder, whereas others float freely, yielding a highly mobile but connected network that anchors the binder, and thus the silicon particles, together. Science, this issue p. 279; see also p. 250