Transfer Learning by Reusing Structured Knowledge

AI Magazine 

A key element of transfer learning is to identify structured knowledge to enable the knowledge transfer. Structured knowledge comes in different forms, depending on the nature of the learning problem and characteristics of the domains. In this article, we describe three of our recent works on transfer learning in a progressively more sophisticated order of the structured knowledge being transferred. We show that optimization methods and techniques inspired by the concerns of data reuse can be applied to extract and transfer deep structural knowledge between a variety of source and target problems. This often happens when we meet with new domains and encounter new tasks.