Inter-time segment information sharing for non-homogeneous dynamic Bayesian networks

Neural Information Processing Systems 

Conventional dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption, which is too restrictive in many practical applications. Various approaches to relax the homogeneity assumption have therefore been proposed in the last few years. The present paper aims to improve the flexibility of two recent versions of non-homogeneous DBNs, which either (i) suffer from the need for data discretization, or (ii) assume a time-invariant network structure. Allowing the network structure to be fully flexible leads to the risk of overfitting and inflated inference uncertainty though, especially in the highly topical field of systems biology, where independent measurements tend to be sparse. In the present paper we investigate three conceptually different regularization schemes based on inter-segment information sharing.