Multi-Layer Feature Reduction for Tree Structured Group Lasso via Hierarchical Projection

Wang, Jie, Ye, Jieping

Neural Information Processing Systems 

Tree structured group Lasso (TGL) is a powerful technique in uncovering the tree structured sparsity over the features, where each node encodes a group of features. It has been applied successfully in many real-world applications. However, with extremely large feature dimensions, solving TGL remains a significant challenge due to its highly complicated regularizer. In this paper, we propose a novel Multi-Layer Feature reduction method (MLFre) to quickly identify the inactive nodes (the groups of features with zero coefficients in the solution) hierarchically in a top-down fashion, which are guaranteed to be irrelevant to the response. Thus, we can remove the detected nodes from the optimization without sacrificing accuracy.