Special Track on Artificial Intelligence for Big Social Data Analysis

Bell, Eric (Pacific Northwest National Laboratory) | Patti, Viviana (University of Turin)

AAAI Conferences 

This track includes data-related tasks such as analysis, capture, curation, search, sharing, storage, transfer, visualization, and information privacy, with special focus on social data on the web. Hence, the broader context of the track comprehends AI, web mining, information retrieval, natural language processing, and sentiment analysis. As the web rapidly evolves, web users are evolving with it. In an era of social connectedness, people are becoming increasingly enthusiastic about interacting, sharing, and collaborating through social networks, online communities, blogs, wikis, and other online collaborative media. In recent years, this collective intelligence has spread to many different areas, with particular focus on fields related to everyday life such as commerce, tourism, education, and health, causing the size of the social web to expand exponentially. The distillation of knowledge from such a large amount of unstructured information, however, is an extremely difficult task, as the contents of today’s web are perfectly suitable for human consumption, but remain hardly accessible to machines. The opportunity to capture the opinions of the general public about social events, political movements, company strategies, marketing campaigns, and product preferences has raised growing interest both within the scientific community, leading to many exciting open challenges, as well as in the business world, due to the remarkable benefits to be had from marketing and financial market prediction. The primary aim of this track is exploring the new frontiers of big data computing for opinion mining and sentiment analysis through machine learning techniques, knowledge-based systems, adaptive and transfer learning, in order to more efficiently retrieve and extract social information from the web.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found