Active learning of neural response functions with Gaussian processes

Park, Mijung, Horwitz, Greg, Pillow, Jonathan W.

Neural Information Processing Systems 

A sizable literature has focused on the problem of estimating a low-dimensional feature space capturing a neuron's stimulus sensitivity. However, comparatively little work has addressed the problem of estimating the nonlinear function from feature space to a neuron's output spike rate. Here, we use a Gaussian process (GP) prior over the infinite-dimensional space of nonlinear functions to obtain Bayesian estimates of the "nonlinearity" in the linear-nonlinear-Poisson (LNP) encoding model. This offers flexibility, robustness, and computational tractability compared to traditional methods (e.g., parametric forms, histograms, cubic splines). Most importantly, we develop a framework for optimal experimental design based on uncertainty sampling.