Default Reasoning via Topology and Mathematical Analysis: A Preliminary Report

Koutras, Costas D. (American University of the Middle East) | Liaskos, Konstantinos (American University of the Middle East) | Moyzes, Christos (University of Liverpool) | Rantsoudis, Christos (Institut de Recherche en Informatique de Toulouse)

AAAI Conferences 

A default consequence relation α|~β (if α, then normally β) can be naturally interpreted via a `most' generalized quantifier: α|~β is valid iff in `most' α-worlds, β is also true. We define various semantic incarnations of this principle which attempt to make the set of (α ∧ β)-worlds `large' and the set of (α ∧ ¬ β)-worlds `small'. The straightforward implementation of this idea on finite sets is via `clear majority'. We proceed to examine different `majority' interpretations of normality which are defined upon notions of classical mathematics which formalize aspects of `size'. We define default consequence using the notion of asymptotic density from analytic number theory. Asymptotic density provides a way to measure the size of integer sequences in a way much more fine-grained and accurate than set cardinality. Further on, in a topological setting, we identify `large' sets with dense sets and `negligibly small' sets with nowhere dense sets. Finally, we define default consequence via the concept of measure, classically developed in mathematical analysis for capturing `size' through a generalization of the notions of length, area and volume. The logics defined via asymptotic density and measure are weaker than the KLM system P, the so-called `conservative core' of nonmonotonic reasoning, and they resemble to probabilistic consequence. Topology goes a longer way towards system P but it misses Cautious Monotony (CM) and AND. Our results show that a `size'-oriented interpretation of default reasoning is context-sensitive and in `most' cases it departs from the preferential approach.