A Deep Architecture for Matching Short Texts

Lu, Zhengdong, Li, Hang

Neural Information Processing Systems 

Many machine learning problems can be interpreted as learning for matching two types of objects (e.g., images and captions, users and products, queries and documents). The matching level of two objects is usually measured as the inner product in a certain feature space, while the modeling effort focuses on mapping of objects from the original space to the feature space. This schema, although proven successful on a range of matching tasks, is insufficient for capturing the rich structure in the matching process of more complicated objects. In this paper, we propose a new deep architecture to more effectively model the complicated matching relations between two objects from heterogeneous domains. More specifically, we apply this model to matching tasks in natural language, e.g., finding sensible responses for a tweet, or relevant answers to a given question.