Goto

Collaborating Authors

Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling

Neural Information Processing Systems

Diffusion models have emerged as a powerful tool for generating high-quality images from textual descriptions. Despite their successes, these models often exhibit limited diversity in the sampled images, particularly when sampling with a high classifier-free guidance weight. To address this issue, we present Kaleido, a novel approach that enhances the diversity of samples by incorporating autoregressive latent priors. Kaleido integrates an autoregressive language model that encodes the original caption and generates latent variables, serving as abstract and intermediary representations for guiding and facilitating the image generation process. In this paper, we explore a variety of discrete latent representations, including textual descriptions, detection bounding boxes, object blobs, and visual tokens. These representations diversify and enrich the input conditions to the diffusion models, enabling more diverse outputs. Our experimental results demonstrate that Kaleido effectively broadens the diversity of the generated image samples from a given textual description while maintaining high image quality. Furthermore, we show that Kaleido adheres closely to the guidance provided by the generated latents, demonstrating its capability to effectively control the image generation process.


Supplementary material: Continuous-time edge modelling using non-parametric point processes Xuhui Fan 1, Bin Li2

Neural Information Processing Systems

There are other approaches in using Hawkes process to model continuous-time edge data. For example, Multivariate Hawkes processes [5, 9, 6, 10, 4, 3, 8]. For a total N nodes, we have an N-dimensional Hawkes process. The edges between nodes are inferred through the dimensionwise endogenous matrix. These models miss some important aspects of information.


Can Learned Optimization Make Reinforcement Learning Less Difficult? 12 Chris Lu

Neural Information Processing Systems

While reinforcement learning (RL) holds great potential for decision making in the real world, it suffers from a number of unique difficulties which often need specific consideration. In particular: it is highly non-stationary; suffers from high degrees of plasticity loss; and requires exploration to prevent premature convergence to local optima and maximize return. In this paper, we consider whether learned optimization can help overcome these problems.


Self-Refining Diffusion Samplers: Enabling Parallelization via Parareal Iterations

Neural Information Processing Systems

In diffusion models, samples are generated through an iterative refinement process, requiring hundreds of sequential model evaluations. Several recent methods have introduced approximations (fewer discretization steps or distillation) to trade off speed at the cost of sample quality. In contrast, we introduce Self-Refining Diffusion Samplers (SRDS) that retain sample quality and can improve latency at the cost of additional parallel compute. We take inspiration from the Parareal algorithm, a popular numerical method for parallel-in-time integration of differential equations. In SRDS, a quick but rough estimate of a sample is first created and then iteratively refined in parallel through Parareal iterations. SRDS is not only guaranteed to accurately solve the ODE and converge to the serial solution but also benefits from parallelization across the diffusion trajectory, enabling batched inference and pipelining. As we demonstrate for pre-trained diffusion models, the early convergence of this refinement procedure drastically reduces the number of steps required to produce a sample, speeding up generation for instance by up to 1.7x on a 25-step StableDiffusion-v2 benchmark and up to 4.3x on longer trajectories.


Fully Explicit Dynamic Gaussian Splatting

Neural Information Processing Systems

Unfortunately, the benefits of the prior and representation do not involve novel view synthesis for dynamic motions. Ironically, this is because the main barrier is the reliance on them, which requires increasing training and rendering times to account for dynamic motions.


Controlling Multiple Errors Simultaneously with a PAC-Bayes Bound

Neural Information Processing Systems

Current PAC-Bayes generalisation bounds are restricted to scalar metrics of performance, such as the loss or error rate. However, one ideally wants more informationrich certificates that control the entire distribution of possible outcomes, such as the distribution of the test loss in regression, or the probabilities of different mis-classifications. We provide the first PAC-Bayes bound capable of providing such rich information by bounding the Kullback-Leibler divergence between the empirical and true probabilities of a set of M error types, which can either be discretized loss values for regression, or the elements of the confusion matrix (or a partition thereof) for classification. We transform our bound into a differentiable training objective. Our bound is especially useful in cases where the severity of different mis-classifications may change over time; existing PAC-Bayes bounds can only bound a particular pre-decided weighting of the error types. In contrast our bound implicitly controls all uncountably many weightings simultaneously.


SG-Nav: Online 3D Scene Graph Prompting for LLM-based Zero-shot Object Navigation

Neural Information Processing Systems

In this paper, we propose a new framework for zero-shot object navigation. Existing zero-shot object navigation methods prompt LLM with the text of spatially closed objects, which lacks enough scene context for in-depth reasoning. To better preserve the information of environment and fully exploit the reasoning ability of LLM, we propose to represent the observed scene with 3D scene graph. The scene graph encodes the relationships between objects, groups and rooms with a LLMfriendly structure, for which we design a hierarchical chain-of-thought prompt to help LLM reason the goal location according to scene context by traversing the nodes and edges. Moreover, benefit from the scene graph representation, we further design a re-perception mechanism to empower the object navigation framework with the ability to correct perception error. We conduct extensive experiments on MP3D, HM3D and RoboTHOR environments, where SG-Nav surpasses previous state-of-the-art zero-shot methods by more than 10% SR on all benchmarks, while the decision process is explainable. To the best of our knowledge, SG-Nav is the first zero-shot method that achieves even higher performance than supervised object navigation methods on the challenging MP3D benchmark.


AGILE: A Novel Reinforcement Learning Framework of LLM Agents Yichen He1 Guanhua Huang 2 Yuan Lin

Neural Information Processing Systems

We introduce a novel reinforcement learning framework of LLM agents named AGILE (AGent that Interacts and Learns from Environments) designed to perform complex conversational tasks with users, leveraging LLMs, memory, tools, and interactions with experts. The agent possesses capabilities beyond conversation, including reflection, tool usage, and expert consultation. We formulate the construction of such an LLM agent as a reinforcement learning (RL) problem, in which the LLM serves as the policy model. We fine-tune the LLM using labeled data of actions and the PPO algorithm. We focus on question answering and release a dataset for agents called ProductQA, comprising challenging questions in online shopping. Our extensive experiments on ProductQA, MedMCQA and HotPotQA show that AGILE agents based on 7B and 13B LLMs trained with PPO can outperform GPT-4 agents. Our ablation study highlights the indispensability of memory, tools, consultation, reflection, and reinforcement learning in achieving the agent's strong performance.


BackdoorAlign: Mitigating Fine-tuning based Jailbreak Attack with Backdoor Enhanced Safety Alignment 2

Neural Information Processing Systems

Despite the general capabilities of Large Language Models (LLMs) like GPT-4, these models still request fine-tuning or adaptation with customized data when meeting the specific business demands and intricacies of tailored use cases. However, this process inevitably introduces new safety threats, particularly against the Fine-tuning based Jailbreak Attack (FJAttack) under the setting of Language-Model-as-a-Service (LMaaS), where the model's safety has been significantly compromised by fine-tuning on users' uploaded examples that contain just a few harmful examples. Though potential defenses have been proposed that the service providers of LMaaS can integrate safety examples into the fine-tuning dataset to reduce safety issues, such approaches require incorporating a substantial amount of data, making it inefficient. To effectively defend against the FJAttack with limited safety examples under LMaaS, we propose the Backdoor Enhanced Safety Alignment method inspired by an analogy with the concept of backdoor attacks. In particular, service providers will construct prefixed safety examples with a secret prompt, acting as a "backdoor trigger". By integrating prefixed safety examples into the fine-tuning dataset, the subsequent fine-tuning process effectively acts as the "backdoor attack," establishing a strong correlation between the secret prompt and safety generations. Consequently, safe responses are ensured once service providers prepend this secret prompt ahead of any user input during inference. Our comprehensive experiments demonstrate that through the Backdoor Enhanced Safety Alignment with adding as few as 11 prefixed safety examples, the maliciously fine-tuned LLMs will achieve similar safety performance as the original aligned models without harming the benign performance. Furthermore, we also present the effectiveness of our method in a more practical setting where the fine-tuning data consists of both FJAttack examples and the fine-tuning task data.


SLED: Self Logits Evolution Decoding for Improving Factuality in Large Language Models

Neural Information Processing Systems

Large language models (LLMs) have demonstrated remarkable capabilities, but their outputs can sometimes be unreliable or factually incorrect. To address this, we introduce Self Logits Evolution Decoding (SLED), a novel decoding framework that enhances the truthfulness of LLMs without relying on external knowledge bases or requiring further fine-tuning. From an optimization perspective, our SLED framework leverages the latent knowledge embedded within the LLM by contrasting the output logits from the final layer with those from early layers. It then utilizes an approximate gradient approach to enable latent knowledge to guide the self-refinement of outputs, thereby effectively improving factual accuracy. Extensive experiments have been conducted on established benchmarks across a diverse range of model families (LLaMA 2, LLaMA 3, Gemma) and scales (from 2B to 70B), including more advanced architectural configurations such as the mixture of experts (MoE).